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A B S T R A C T

In order to effectively attenuate the inherent hysteresis nonlinearity of magneto-rheological
(MR) dampers, and achieve precise tracking control of damping force, a cascaded control
strategy based on Hammerstein model is proposed in this paper. A BP neural network is
utilized to construct the nonlinear module of Hammerstein model, which accurately captures
the hysteresis behavior of MR dampers. The dynamic characteristics of the dampers are then
described by a linear time-invariant model. For MR dampers, the cascaded control strategy
enhances the robustness of the system compared to traditional open-loop control based on the
inverse model schemes. The effectiveness of the proposed control algorithm has been verified
through simulation experiments and hardware-in-the-loop experiments using a seat suspension
testbed equipped with MR dampers.

. Introduction

Magneto-rheological (MR) fluid is an intelligent material that is extensively utilized in various industries. This is mainly due
o its ability to exhibit instantaneous reversible rheological behavior in the presence of a magnetic field, and the consistent
elationship between yield stress and magnetic field intensity [1]. MR dampers, which utilize MR fluid, have proven to be effective in
educing vibrations caused by road disturbances, thereby improving ride comfort and handling comfort [2]. However, the hysteresis
haracteristics of MR dampers can result in complex nonlinear dynamic behavior [3]. To attenuate the hysteresis effect and achieve
etter vibration isolation performance, appropriate modeling methods and control strategies need to be employed [4].

Various models have been developed to describe the nonlinear dynamic characteristics of MR dampers, which can be broadly
lassified into parametric models (Bingham model, Bouc-Wen model, and so on) [5,6] and nonparametric models (especially neural
etwork models) [7,8].

The most classical control method for seat suspension systems equipped with MR dampers is hierarchical control [9]. The upper
evel uses control strategies such as sliding mode control to calculate the desired damping force for the seat suspension, while
he lower level uses an open-loop control based on the inverse model (OLC-IM) to obtain the desired control current for the MR
amper [10,11]. However, the lower level open-loop control method cannot actively compensate for disturbances or perturbations in
he system. For example, the MR fluid exhibits different characteristics with temperature changes, i.e., with increasing temperature,
he MR fluid tends to expand, thereby reducing its yield stress. Conversely, at low temperatures, the viscosity stress of the MR fluid
ncreases, leading to a more pronounced decrease in its shear damping capability [12]. In practical applications, dissipated power
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Fig. 1. The testbed used for Experiments.

is converted into internal energy, causing an increase in temperature, altering the performance of the MR fluid, and significantly
reducing the damping force. The model-plant mismatches hinder precise force control of the MR damper [13]. Therefore, for a
seat suspension system equipped with MR dampers, the controller needs to be robust to temperature changes, changes in MR
fluid performance, and other system parameter variations, in order to maintain the desired damping force output. To address
this issue, the Hammerstein-Wiener model which considers the impact of temperature during the modeling process, is proposed
in [14,15]. The utilization of support vector machines for temperature modeling is discussed in [16]. The influence of temperature,
and both the forward and inverse models are discussed in [17,18]. An inverse model is adopted to compensate for the influence of
temperature [19]. The methods discussed earlier take into account the impact of temperature on damping force. However, to obtain
an exact inverse model that accurately represents the relationship between temperature and damping force can be a challenging task.
Furthermore, considering only the influence of temperature may not be sufficient to address the challenges brought by variations in
other parameters. An integrated control method for semi-active suspension equipped with MR dampers is proposed in [20], which
utilizes an 𝐻∞ controller. However, this approach requires linearizing the complex nonlinear characteristics of the MR damper.
A Fractional-order integrated sliding mode controller is provided for MR semi-active suspension in [21], but sliding mode control
cannot directly handle system constraints. A fuzzy controller is designed in [22] for an MR semi-active suspension. However, the
fuzzy approximation technique requires a significant amount of reliable prior knowledge.

From the above discussions, this paper adopts a hierarchical control strategy for seat suspension system equipped with MR
dampers. For the lower level, a cascaded control strategy for MR dampers based on Hammerstein model is proposed. Hammerstein
model offers a formal separation of the nonlinear and linear characteristics of the system, which is beneficial for system analysis and
the design of cascaded control strategy. A static inverse model is to compensate for the nonlinear characteristic of the system in series
in front of Hammerstein model. Subsequently, a triple-step controller is designed based on the model after inverse compensation
to track the desired damping force calculated by upper level control scheme. Compared with the open-loop control for lower level,
it can eliminate the influence of disturbances or perturbations and improve control accuracy. In contrast to integrated control,
hierarchical control allows each level to be independently designed and optimized, improving control precision. Finally, the results
of the simulation experiments demonstrate the robustness of the cascaded control strategy. It successfully achieves accurate tracking
of the desired damping force, even in the presence of various disturbances. Furthermore, the hardware-in-the-loop experiments
validated the practical feasibility and real-world applicability of the proposed control algorithm for MR dampers in seat suspension
systems.

The structure of this paper is as follows: In Section 2, Hammerstein model of MR dampers is established by experimental data. In
Section 3, an inverse model and the triple-step controller of the MR damper are designed, respectively. In Section 4, the simulation
experiment of force tracking of the MR damper is carried out in Matlab/Simulink environment to verify the effectiveness of the
proposed control scheme. In Section 5, physical experiments are conducted to assess the capability of the force tracking control
algorithm and evaluate the performance of the seat suspension. Finally, conclusions are drawn.

2. Modeling and identification

In this section, experiments are conducted for the modeling of MR dampers, with a primary focus on its damping characteristics
for vibration reduction and hysteresis behavior.

2.1. Experimental setup

The experimental data used in this paper is of the input–output measurements from an MR damper of a seat suspension system,
as shown in Fig. 1, which is equipped with a MR damper, an electric motor power system, a data acquisition and control system,
and a seat suspension system with sensors.
2
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Table 1
Input signal information.

Frequency/(Hz) Amplitude/(mm) Maximum speed of piston motion/(m/s)

0.16 20 0.052
0.38 20 0.131
0.80 20 0.262
1.66 20 0.524

Fig. 2. Characteristic curves of MR damper at the maximum piston velocity 𝑣 = 0.131 m∕s.

Fig. 3. The Hammerstein model structure.

Note that the motor utilized in the experimental setup has a rated power of 400 W, a stroke length of 200 mm, a rated output of
.8 kN, and a maximum instantaneous output of 17.4 kN. This motor is responsible for generating the actuating force required by
he experimental system.

The hardware of the data acquisition and control system primarily consists of an upper and a lower industrial computers, data
cquisition cards, and current drive boards. The board card installed in the industrial computer has 32 analog input ports, 4 analog
utput ports, and 48 digital input/output ports, which facilitate the acquisition and control of data in the experimental system.
or the MR damper, the control current is supplied by a current drive board, which operates on an 18–24 V voltage range. The
rive board is capable of generating a control current proportional to the input voltage, with a maximum output current of 2 A. By
ending a voltage signal to the drive board, effective damping control can be achieved.

To measure the acceleration of the seat suspension, two ADXL202 acceleration measurement modules are used. Additionally,
draw-wire encoder, BRT38-4M/5M, is utilized to measure the relative displacement of the piston rod. A force sensor, RDF-8, is

mployed to measure the force generated by the MR damper.
According to the standard QC/T545-1999 ‘‘Test Methods for Vehicle Cylinder Dampers on the testbed’’, the input signals for the

xternal characteristic testing of MR dampers include piston stroke, piston velocity, and control current. The piston stroke is selected
s sinusoidal signals with frequencies of 0.16 Hz, 0.38 Hz, 0.80 Hz, and 1.66 Hz, respectively. The corresponding maximum piston
elocities for the four groups are 0.052 m/s, 0.131 m/s, 0.262 m/s, and 0.524 m/s, respectively, as shown in Table 1. The vertical
irection test is conducted, where the initial position of the piston rod is tuned to the middle of the damper. Different values of
urrent ranging from 0 A to 1.0 A in increments of 0.1 A are applied during the test.

For brevity, only the responses of the MR damper at a frequency of 0.38 Hz and a maximum piston velocity of 0.131 m/s are
hown in Fig. 2. The Force-Stroke (F-S) curve in Fig. 2(a) demonstrates that the MR damper exhibits excellent energy dissipation
haracteristics. The Force-Velocity (F-V) curve in Fig. 2(b) highlights the significant hysteresis of the MR damper. Additionally, as
he input current increases, the damping force markedly rises [23].

The experimental data needs to be normalized, i.e., the experimental data is converted into the set of (0, 1). In this paper, the
eural network is trained with 75% of the experimental data, and the accuracy of the trained neural network model is tested with
he rest of 25% of the experimental data.

.2. Establishment of Hammerstein model

Considering the strong nonlinearity and hysteresis characteristics of MR dampers, a Hammerstein model is established, which
ffers significant advantages for system analysis and the design of cascaded control strategy. The structure is shown in Fig. 3.
(1) Static nonlinear block
3
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Fig. 4. The structure of the BP neural network. 𝑈1,2,…,𝑚 ∶ the input signal. 𝐻1,2,…,𝑛 ∶ the output of the hidden layer. 𝑂𝑘: the output of the neural network. 𝐷𝑘:
actual output. 𝑤𝑖𝑗 and 𝑣𝑗𝑙 ∶ weight values of different layers.

The static nonlinear block is responsible for describing the main force contribution. To accurately capture the complex nonlinear
ehavior exhibited by MR dampers, a BP neural network is used to approximate the static nonlinear block, which is shown in Fig. 4.

The design of the BP neural network is as follows:
(1) Parameter determination
Due to the hysteresis characteristic of the MR damper, the output of its network depends not only on the current input but also

n past inputs and outputs.
Hence, this paper proposes a special structure of the BP neural network that incorporates the output of the damping force from

he previous moment as an input to improve modeling accuracy, as shown in Fig. 4.
Therefore, the number 𝑚 of nodes of the input layer is 4, which are the current, piston displacement, piston velocity, and the

output of the damping force at the previous moment, respectively. The damping force is the only output of the output layer.
The number of neurons in the hidden layer (𝑞) is designed according to the empirical formula 𝑞 =

√

𝑚 + 𝑔 + 𝑎, where 𝑚/𝑔
represents the number of neurons in the input/output layer of the BP neural network, respectively. The term 𝑎 is a constant from 1
to 10. The final value of the number of neurons in the hidden layer is determined as 12 by trial-and-error method [24].

(2) The training function
The excitation functions of neurons of hidden layer and output layer adopt hyperbolic tangent sigmoid function and linear

function respectively, which makes it possible to approximate an arbitrary nonlinearity between inputs and outputs. The mean
square error (MSE) between the actual output (𝐷𝑘) and the output of the neural network (𝑂𝑘) is chosen as the performance function,
and the Levenberg–Marquardt algorithm is used as the training function of the BP neural network [25].

(2) Dynamic linear block
BP neural network is essentially a static nonlinear mapping. In order to reduce the approximation error, dynamic characteristics

are introduced. The damping force generated by the static nonlinear block is taken as the input, and the actual damping force is
treated as the output. The order of numerator and denominator of the dynamic linear system is determined by trial-and-error, and
the parameters are identified by the least square method. Finally, a transfer function is determined as follows

𝐺 (𝑠) = 579800
𝑠2 + 671.5𝑠 + 579900

(1)

The transfer function (1) is stable because both its poles are located in the left half-plane of the virtual axis, and there is no zero
oint.

A state space equation of the transfer function is shown as follows
[

�̇�1
�̇�2

]

=
[

0 1
−579900 −671.5

] [

𝑥1
𝑥2

]

+
[

0
1

]

𝑢

𝑦 =
[

579800 0
]

[

𝑥1
𝑥2

] (2)

Remark 1. The terms of 𝑥1 and 𝑥2 in (2) have no physical meaning. The input variable of 𝑢 is the damping force generated by the
static nonlinear block, and the output variable of 𝑦 is the ‘‘actual’’ damping force.

2.3. Model verification

(1) Results of the BP neural network model
The model is verified with the data of the excitation velocity of 0.131 m∕s, the amplitude of 20 mm, the MSEs of the training

−4
4

and test data have reached 10 . Curves of both the force-piston displacement and force-piston velocity are shown in Fig. 5. From
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Fig. 5. Results of the BP neural network model. Blue solid lines: experimental data. Red dotted lines: the BP neural network model output.

Fig. 6. Comparison of modeling error. (a): Without damping force at previous moment. (b): With damping force at previous moment.

Fig. 7. Comparison of damping force generated by the Hammerstein model and actual damping force. Red solid line: actual damping force. Blue dotted line:
ammerstein model damping force.

ig. 5(b), it can be observed that there exists slight deviation between the predicted curve and the experimental curve, in particular,
n the hysteresis cycle.

From Fig. 6, it reveals that by using the previous output damping force as input, the nonlinearity and hysteresis characteristic
f the MR damper can be better described, and resulting in improved tracking accuracy.
(2) Results of Hammerstein model
Data of different current values with the piston velocity of 0.131 m∕s and amplitude of 20 mm are selected to verify the

ffectiveness of the obtained Hammerstein model. The damping force generated by the model and the actual damping force are
hown in Fig. 7(a). From Fig. 7(b), it demonstrates that the maximum error is 0.05 kN, and the MSE of them is less than 0.000042.
ote that, compared with the static nonlinear block, the maximum error is much smaller.

. Controller design

This section focuses on the controller design problem of the MR damper, aiming to improve its force tracking performance and
nhance the overall performance of the vehicle seat in terms of vertical dynamics.
5
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Fig. 8. Block diagram of MR damper control system structure.

Fig. 9. Comparison of tracking diagram of damping force after inverse model compensation. Red solid line: actual damping force. Blue dotted line: Hammerstein
model damping force.

A hierarchical control strategy is adopted, with a cascaded control method employed at the lower level to ensure the MR damper
can track the desired damping force quickly and accurately. The control structure is shown in Fig. 8, which includes a triple-step
controller module, an inverse model module, and the controlled MR damper. The term of 𝑦∗ represents the desired damping force
calculated by the upper level controller. It should be noted that the control current 𝐼 generated by the inverse model is used to
control the MR damper.

3.1. An inverse model of the MR damper

The accuracy of the force-to-voltage/current mapping determines the tracking performance of the damping force. However, for
the OLC-IM, the potential model-plant mismatches that may arise from temperature changes, changes in MR fluid performance, and
other variations in system parameters are disregarded.

In this paper, the proposed cascaded control strategy is composed of an inverse model and a triple-step controller in series. The
inverse model is connected in series with Hammerstein model to compensate for its nonlinear part [26], and a BP neural network
is selected to train the inverse model.

The relative displacement, velocity, and damping force of the piston rod at this moment and the current value at the previous
moment are chosen as the inputs. The current at present is chosen as the output. Specific steps are the same as the static nonlinear
block mentioned earlier, and will not be repeated here.

Figs. 9(a) and 9(b) illustrate that Hammerstein model in series with the inverse model exhibits satisfactory tracking performance,
but there are still noticeable errors between the actual output and the model output. These errors need to be attenuated to minimize
their impact on the system dynamics.

3.2. Triple-step controller

A triple-step controller is designed for the linear model of Hammerstein model after the inverse compensation, taking the
compensation errors and model uncertainties as disturbances. The triple-step controller includes a steady-state-like control module,
a reference-dynamic-based feedforward control module, and an error feedback control module [27], which structure is shown in
the dashed box of Fig. 10.

Step 1: Steady-state-like control
The state space model (2) is expressed as follows:

�̇�1 = 𝑥2
�̇�2 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑢 (3)
6
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Fig. 10. Control structure of a MR damper with triple-step controller.

with 𝑎 = −579900, 𝑏 = −671.5, 𝑐 = 579800.
Suppose that the system has reached a steady state, i.e., �̇� = 0, �̈� = 0, then

0 = �̇� = 𝑐�̇�1 = 𝑐𝑥2 (4)

0 = �̈� = 𝑐�̇�2 = 𝑐(𝑎𝑥1 + 𝑏𝑥2 + 𝑢) (5)

By enforcing 𝑢 = 𝑢0, then the steady-state-like control law can be obtained as follows:

𝑢0 = −𝑎𝑥1 (6)

Step 2: Reference-dynamics-based feedforward control
Define the reference signal as 𝑦∗, which might change with working conditions of the system. In order to improve characteristics

f the system, the changes of the reference signal are taken into consideration, i.e., a reference-dynamic-based feedforward control
aw is designed. Then, the control law becomes:

𝑢 = 𝑢0 + 𝑢1 (7)

Substituting (7) into (5), one has

�̈� = 𝑏𝑥2 + 𝑢1 (8)

Then, by enforcing �̈� = �̈�∗, the reference-dynamics-based feedforward control law is

𝑢1 = �̈�∗ − 𝑏𝑥2 (9)

Step 3: Error feedback control
Due to high-order unmodeled dynamics of system or external disturbances, systems with the control law derived from the first

wo steps often have a certain tracking deviation. Error feedback control introduced can further reduce the tracking deviation, and
mprove the robustness to uncertainties.

Define the tracking error of the system as 𝑒1 = 𝑦∗ − 𝑦. Suppose the feedback control to be determined is 𝑢2, then the controller
f the system becomes:

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 (10)

Substituting (10) into (5), one has

�̈� = �̈�∗ + 𝑢2 (11)

The first derivative and second derivative with respect to time of the system tracking error 𝑒1 are:

�̇�1 = �̇�∗ − �̇� (12)

𝑒1 = �̈�∗ − �̈� = −𝑢2 (13)

By enforcing 𝑒2 = �̇�1, (13) is

�̇�2 = 𝑒1 = −𝑢2 (14)

Construct a candidate Lyapunov function:

𝑉1 =
1
2
𝑒21 +

1
2
𝑘0𝜒

2 (15)

where 𝑘0 > 0, and 𝜒 = ∫ 𝑒1𝑑𝑡. The derivative of 𝑉1 with respect to time is

�̇�1 = 𝑒1�̇�1 + 𝑘0𝑒1𝜒 (16)
7
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Fig. 11. Curves of the desired force tracking and error (f = 5 Hz). Red solid line: desired damping force, blue dotted line: output damping force by cascaded
control, blue solid line: tracking error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to force the error system asymptotically stable, select the virtual control variable 𝑒∗2 = −𝑘1𝑒1 − 𝑘0𝜒 , where 𝑘1 > 0. By
nforcing 𝑒2 = 𝑒∗2, then

�̇�1 = −𝑘1𝑒21 (17)

�̇�1 = −𝑘1𝑒1 − 𝑘0𝜒 (18)

Note that in the system process, in general, 𝑒2 ≠ 𝑒∗2. Denote 𝑒3 = 𝑒∗2 − 𝑒2. Then, (17) and (18) become

�̇�1 = −𝑘1𝑒21 − 𝑒1𝑒3 (19)

�̇�1 = −𝑘1𝑒1 − 𝑘0𝜒 − 𝑒3 (20)

From (14) and 𝑒∗2 = −𝑘1𝑒1 − 𝑘0𝜒 , 𝑒2 = �̇�1, one has

�̇�3 = �̇�∗2 − �̇�2
= − 𝑘1�̇�1 − 𝑘0𝑒1 + 𝑢2

(21)

By enforcing 𝑉2 = 𝑉1 +
1
2 𝑒

2
3, then

�̇�2 = �̇�1 + 𝑒3�̇�3
= − 𝑘1𝑒21 + 𝑒3

[

𝑢2 −
(

𝑘0 + 1
)

𝑒1 − 𝑘1�̇�1
] (22)

In order to ensure the negative definite of 𝑉2, the control law is selected as

𝑢2 = 𝑘1�̇�1 +
(

𝑘0 + 1
)

𝑒1 − 𝑘2𝑒3 (23)

Combining 𝑒∗2 = −𝑘1𝑒1 − 𝑘0𝜒 and 𝑒2 = �̇�1, the control law is as follows

𝑢2 =
(

𝑘0 + 1 − 𝑘21 + 𝑘1𝑘2
)

𝑒1 + 𝑘0
(

𝑘2 − 𝑘1
)

∫ 𝑒1𝑑𝑡 + 𝑘2�̇�1 (24)

Combining (6) and (9), the final control law is

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 (25)

Remark 2. The triple-step controller adopts the ‘feedforward and feedback’ control structure, which has strong robustness to
disturbances or uncertainties. Note that steady-state-like control law mainly reflects the characteristic of the system, and the
reference-dynamics-based feedforward control law provides a correction behavior while the reference of the system is changing.

4. Simulation analysis

In order to verify the effectiveness of the proposed control strategy, the simulation experiments of damping force tracking
control are carried out. The steady-state-like control parameter 𝑎 of the designed triple-step controller is −579900, the reference-
dynamics-based feedforward control parameter 𝑏 is −671.5, and the error feedback control parameters 𝑘0, 𝑘1, 𝑘2 is 3994, 2496,
2000 respectively. First, a tracking experiment is performed on a single frequency reference signal, i.e., 𝑦∗ = 2.5 sin (2𝜋𝑓𝑡) kN. The
frequency 𝑓 of the reference signal is selected as 5 Hz. The simulation results are in Fig. 11, which show that the MR damper
can track the desired damping force accurately. In order to further verify the effectiveness of the designed controller, composite
frequency signals are selected as 𝑦∗ = 1−2 sin(2− cos(2𝜋𝑓1𝑡) − cos(2𝜋𝑓2𝑡))kN, where the frequencies are set as 𝑓1 = 0.5 Hz, 𝑓2 = 3 Hz.

Fig. 12 shows that the designed controller is capable of maintaining the tracking performance of the system for the composite
frequency signals.

Table 2 shows the maximum error, error percentage, and MSE of the MR damper. The values of the MSE are below the level of
−4
8

10 , and the maximum error percentage is 3.1411%, which demonstrate the effectiveness of the proposed control strategy.
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Fig. 12. Curves of the desired force tracking and error (f = (0.5,3) Hz). Red solid line: desired damping force, blue dotted line: output damping force by
cascaded control, blue solid line: tracking error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 13. Block diagram of semi-active seat suspension equipped with MR damper.

Table 2
Maximum tracking error, error percentage, mean square error with different
frequency signals.

Signal frequency Max error/kN Percentage/% MSE/kN

5 Hz 0.0725 2.8995 8.5024 × 10−4

(0.5,3) Hz 0.0536 2.1422 5.7273 × 10−4

5. Experiment

In this section, the proposed control strategy has been applied to a semi-active seat suspension equipped with MR dampers [28].
A hierarchical control strategy is adopted, which is shown in Fig. 13. In the upper level, the seat suspension utilizes a sliding
mode controller based on barrier functions [29] to calculate the desired damping force 𝐹 ∗. 𝑥𝑠 and �̇�𝑠 represent the velocity and
displacement of the sprung mass, respectively.

In the lower level, experiments on damping force tracking control and suspension performance testing are conducted under
various road conditions. Additionally, temperature rise can be used as an example to validate the robustness of the cascaded control
strategy in the presence of model-plant mismatches.

Remark 3. In the experiment section, the maximum piston velocity of the damper is set to 0.131 m/s. As shown in Fig. 2, the output
damping force of the MR damper ranges from −1500 𝑁 to 1500 N. Therefore, for the upper-level control, we use barrier functions
to limit the maximum damping force within [−1500 N, 1500 N]. Consequently, the obtained current varies within the range of [0
A, 1 A].

(1) Damping force tracking on various road surfaces with MR dampers at room temperature conditions
Experiments of the damping force tracking performance with MR dampers at room temperature conditions are conducted on a

sinusoidal road surface with a frequency of 2.5 Hz and an amplitude of 0.05 m, which are shown in Fig. 14(a). It is identified that
the proposed cascaded control strategy is more effective in tracking the desired damping force compared to the OLC-IM.

The experimental results, depicted in Fig. 14(b), validate the effectiveness of the proposed control strategy on a randomly rough
Class C road pavement.
9
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Table 3
Experimental results of triple-step method.

Road surface Max error/kN MSE/(kN)2

Sinusoidal 0.1331 2.6284 × 10−3

Random 0.1288 2.7764 × 10−3

Table 4
Experimental results of the OLC-IM.

Road surface Max error/kN MSE/(kN)2

Sinusoidal 0.2112 8.1997 × 10−3

Random 0.2262 8.2591 × 10−3

Table 5
Experimental results of triple-step method control at high temperature conditions.

Road surface Max error/kN MSE/(kN)2

Sinusoidal 0.1248 2.7633 × 10−3

Random 0.1772 3.6731 × 10−3

Table 6
Experimental results of the OLC-IM at high temperature conditions.

Road surface Max error/kN MSE/(kN)2

Sinusoidal 0.2944 2.1997 × 10−2

Random 0.2740 1.2313 × 10−2

Fig. 14. Curves of the desired force tracking with MR dampers at room temperature conditions. Red solid line: desired damping force, blue dotted line: output
amping force by cascaded control, black dotted line: output damping force by the OLC-IM. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Tables 3–4 present the maximum error and MSE of the results obtained from the damping force tracking experiments using the
wo aforementioned methods, it can be concluded that both the proposed control strategy and the OLC-IM can achieve satisfying
racking performance of the damping force, and the proposed control strategy exhibits slightly better performance.
(2) The robustness of cascaded control for MR dampers at high temperature conditions
The OLC-IM is commonly used in the control of MR dampers. However, this method faces challenges in dealing with disturbances

nd perturbations, particularly due to the temperature sensitivity and sedimentation characteristics of MR fluids [30]. Since there
s no temperature sensors of the MR damper on the testbed, the precise temperature of the MR damper could not be accurately
easured. According to [30], continuously applying the maximum current permitted by the testbed, 1 A, to the MR damper for

3 min, the fluid temperature rises significantly, and the damping characteristics of the actual system will be altered. (At this point,
the temperature rise is noticeably felt by touch.) Notably, the proposed cascaded control strategy does not require to know the
exact temperature value. The experimental results, shown in Fig. 15, provide valuable insights into the performance of the cascaded
control strategy.

It can be concluded that while the damping characteristics of the actual system are altered by temperature changes, leading
to model-plant mismatches, the OLC-IM cannot track the desired force anymore. In contrast, the proposed control strategy is still
capable of effectively tracking the desired damping force.

The results of the maximum error and MSE of damping force tracking experiments with the heated MR damper using the above
two methods are shown in Tables 5–6.
10
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Fig. 15. Curves of the desired force tracking with MR dampers at high temperature conditions. Red solid line: desired damping force, blue dotted line: output
amping force by cascaded control, black dotted line: output damping force by the OLC-IM. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 16. Time-domain response of the seat suspension at a speed of 10 km/h. Red solid line: cascaded control, blue dotted line: the OLC-IM, black dashed line
in (b) and (d): passive suspension, purple dotted line in (c): desired damping force. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The above experimental results indicate that the OLC-IM leads to a significant reduction in tracking accuracy while the MR
damper heats up. However, the proposed control strategy can effectively attenuate model mismatch of the inverse model and achieve
satisfactory tracking performance with MSEs less than 10−3.

(3) Performance evaluation of seat suspension with an MR damper
The robustness of the proposed control strategy is evaluated on a continuous bump road surface with an MR damper at high

temperature conditions. The performance of the seat suspension system is shown in Figs. 16–17.
At a speed of 10 km∕h, passing through continuous bumps with heights of 0.04 m and 0.06 m, time-domain response of the

eat suspension system is depicted in Fig. 16. Fig. 16(b) displays the vertical acceleration of the seat, and it can be observed that
he proposed control strategy performs slightly better than the other two methods. Fig. 16(c) illustrates the damping force curve,
ndicating temperature-induced model-plant mismatches at 0.45 s and 0.95 s. The force tracking performance of the OLC-IM is poor,
esulting in significant fluctuations in the suspension stroke, as shown in Fig. 16(d). Compared to the OLC-IM, the proposed cascaded
ontrol strategy can effectively track the desired damping force, ensuring the ride comfort of the seat suspension system.
11

When the vehicle speed increases to 30 km∕h, the time-domain response of the seat suspension system is shown in Fig. 17.



Mechanical Systems and Signal Processing 222 (2025) 111748S. Yu et al.
Fig. 17. Time-domain response of the seat suspension at a speed of 30 km/h. Red solid line: cascaded control, blue dotted line: the OLC-IM, black dashed line
in (b) and (d): passive suspension, purple dotted line in (c): desired damping force. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The OLC-IM has lost its ability to track the damping force, resulting in inferior ride comfort compared to passive control. However,
the proposed cascaded control strategy can still ensure force tracking performance and exhibits significant advantages in terms of
ride comfort.

In summary, the presence of temperature changes, variations in MR fluid performance, and other system parameter variations
may lead to model-plant mismatches and a loss of damping force tracking performance for the OLC-IM schemes. However, the
evaluation conducted on a testbed with an MR damper under temperature rises confirmed the robustness of the proposed control
strategy in enhancing seat suspension performance under realistic operating conditions.

6. Conclusion

MR damper has strong nonlinearity and hysteresis characteristics. In this paper, a Hammerstein model that captures the nonlinear
behavior of the MR fluid and the linear dynamics of the damper was established, providing a comprehensive representation of
the system, as well as realizing a balance between accuracy and complexity. A cascaded control strategy was proposed to track
the reference signal, attenuate unmodeled dynamics, and compensate for static errors. Experiments on a seat suspension with MR
dampers traveling on a bump road were carried out to further evaluate the effectiveness of the proposed scheme. It showed the
proposed scheme can improve tracking performance of the MR damper, and ride comfort of the seat suspension. Furthermore, it
demonstrated as well that the proposed scheme is robust to model-plant mismatches, in particular, model-plant mismatches caused
by temperature changes of the MR damper.
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